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INTRODUCTION

1. The necessity of the dissertation

The Twin Rotor MIMO System (TRMS_Twin Rotor Multi-Input
Multi-Output System) is an aerodynamic experiment set, whose
movements simulated like those of a helicopter. TRMS is a typical
nonlinear control object with multi-input multi-output, significant
coupling, parameter uncertainty, and effects disturbance. Therefore,
many domestic and foreign researchers have taken TRMS as the
research object to develop and test new control methods, especially
for the problem of accurate position control. Although each project
has achieved results based on the criteria and methods of establishing
the control system, TRMS is still a big challenge for researchers to
apply new control algorithms to improve tracking trajectory
performance. Therefore, the author has chosen the dissertation topic
"Research on Desinging Trajectory Tracking Controller for Twin
Rotor MIMO System" to make more significant new scientific
contributions in theoretical research as well as applicability in
practice for this nonlinear object class.

2. The goals and tasks of the dissertation

* Goals of the dissertation:

Research to design an exact linearized feedback controller
combines with the uncertainty and disturbance identifiers for the
electromechanical system, which is described by the Euler-Lagrange
model in general and the TRMS in particular.

For accomplish this goal, the dissertation sets out the main tasks:

- Study on the technique to install an exact linearized feedback
controller for the Euler-Lagrange system class, when it has the exact
model.

- Supply a disturbance identification function as well as the
additional controller for this disturbance compensation to the main
controller. This work extends the applicability and the performance
of the exact linearized controller, including the FEuler-Lagrange
system classes with inaccurate models.
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3. Object and research scope of the dissertation

* Object:

Object class is represented by the bilinear Euler-Lagrange model
with uncertainty in general and TRMS in particular. For TRMS, this
is a system with almost full simulation function of a helicopter and
belongs to the group of mechatronic systems with the general Euler-
Lagrange model.

* Research scope:

- Study of designing control method for an incorrect bilinear
Euler-Lagrange model with system uncertainty functions, so that the
outputs (the joint variables) of the system asymptotic tracking follow
the desired reference trajectory.

- Apply above the method to TRMS. The proposed controller
quality is tested through simulation and experimentation.

4. Research methods

To achieve the set goals, the dissertation used following research
methods:

- Theoretical research: Analysis and syndissertation of
knowledge about mathematical model errorsof the Euler-Lagrange
system in general and the TRMS system in particular, the source of
model deviations. From that will propose an appropriate control
method, in particular here is the adaptive control method to
compensate for model errors combine with the feedback accurate
linear control method.

- Simulation research: Using the Matlab-Simulink tool to
simulate to verify the theoretical judgments and proposed algorithms
by the dissertation.

- Researching results are proved by experiment in real
conditions, i.e., to do experiments to appreciate the stability adapted
performance of the proposed controller on the physical test table of
the TRMS.

5. Contributions of the dissertation

* Dissertation has detail contributions such as:
- Establishing the trajectory tracking controller for the bilinear
Euler-Lagrange system has an exact model. Dissertation proved the
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tracking controller is the stability and asymptotic stability in both
case certainty and uncertainty factors;

- Establishing the adaptive trajectory tracking controller for the
uncertainty bilinear electromechanical system by the exact linearized
controller and the uncertain identifier based on time receding
optimization.

* Scientific significance of the dissertation:

- From the controller according to PID law of the equipment
supplier for TRMS, the dissertation has designed an uncertain
compensation controller based on time receding optimization to
achieve high accuracy on reference trajectories;

- Contributing a small part to the diverse development of
automatic control theory for nonlinear systems with uncertainty
parameters and effects disturbance

* Practical significance of the dissertation:

- Diversifying control methods for TRMS model, applied in
graduate and postgraduate training of the university;

- The results of this research will apply for flying devices with
complex aerodynamic form.

6. Structure of the dissertation

The main content of the dissertation has four chapters and the
conclusion, includes the research issues:

Chapter 1 presents an overview of the modeling and the
available control methods of the TRMS. Thereby, clarifying the
urgency of dissertation in proposing TRMS appropriate control
method to improve control system performance.

Chapter 2 establishes the exact linearized controller for the
TRMS when it has an exact model.

Chapter 3 establishes the compensating control for function
uncertainty based on time receding optimization. Then, combine with
the accurateness linearized controller to be the stability adapted
controller for the TRMS.

Finally, in chapter 4, the performance of the exact linearized
controller combined with the disturbance compensation identifier for
the model's uncertainty will be verified by the TRMS physical
experimental table in real conditions.
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CHAPTER 1
OVERVIEW OF TRMS - MODELING AND METHODS OF

CONTROLS

1.1 Modeling of TRMS
1.1.1 TRMS physical structure

PC I

control

" measurement
Figure 1.1: TRMS physical structure [8]
Figure 1.1 shows the TRMS physical structure [8]. This is a

laboratory for experimental. Figure 1.2 below describes in detail the
electrical and mechanical relationship in TRMS.

Tail rotor

DC motor
and tacho

TRMS 33.220

Fig 1.2: Electro-mechanical structure TRMS [9]-[10]

1.1.2 Modeling by the theoretical method
1.1.2.1 Euler-Lagrange equation
The Euler-Lagrange equation of a mechanical system is

structured as follows [11]:

5 18-



Lagrange equations

Apply the Euler-Lagrange
equation (1.1) to TRMS [9], [10]:

d(oL) oL _
dt 80‘{},’ 60:,,, - i i (127)

i aL _Q = Miu .\I
dt\ oe, ) Oa, T (1.28)
where:
3 3 }
L:EWM—EWﬂ (1.29) Figure 1.3: TRMS [10]

Perform the two equations above together in vector form, this yields:

|:J| cos? a,+J, sin’ o, + h? ("”T, +my, ) +Jy h (""T, ly, sina, — myly, cosa, )} [dhj|

in, - g
h(mTllTl sina, —mply, cosa”) (Ji+7,) v

h(m]i ly cosa, +my by, sina, )df +2(J,-J))a,a, sing, cosa, LMy,

.2 . .
a, (Jl -J, ) sina, cosa, + g (mTllT1 cosa, +1my, sz sin al,)

l (1.30)
where:
Z Mih = Mprop.h - Mfric,h - M ogple T kmd)v cosa,
i (133)
Z—Mm =M Top.v _Mfwﬁ(w +ktd)h, +M yro
i " " (1.34)

a, : Yaw angle [rad], &, : Pitch angle [rad], @, : Rotational velocity

of the tail rotor [rad/s], @), : Rotational velocity of the tail rotor [rad/s]

1.1.2.2. Model parameter identification
The detailed steps of the above identification procedure for TRMS
were in [9] and [10].

_ T
u T Mechanism of Q - (ah, 4 av)
—>
TRMS

Figure 1.6: Overall block structure of the TRMS physical system
1.2 Previous control methods and overview of the related studies
Euler-Lagrange's equation for a general electromechanical system

[LTL[12[13L[15]: M(g)d +C(g.9)d + 9(g) = Fz +n(t) (1.40)
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Applying the TRMS model described by equation (1.30) into
equation (1.40) is given the parameters:

= (j;ébrop,h], q= [Z’lj, M(g) = (m,y_7 (g)), C(g,g) = (‘%;7(‘1”2))’ i,j=12

prop.v v
. T
F =Ty, g(@=(0, gimylcosa, +myl, sina,))

77(f) — 7M_[m,r./7, - Mcn,ble + km a.)v cosa,
- 7Mf7"iz:,v + ktw/z + Mg

yro

my(g) =J, cos?a, +J,sin’ a, + h,2(7nTI +my )+ J3

myp(q) =my(g) = h,(mTllTl sina, - mply, COSaU), ma(q)=J,+J,,
a(g-9) =2a,(J, —J))sing, cosa,

c2(q,9) = dwh’(mT,lT, cosa, +myly, sin a,,,)

e1(¢:9) = &, (J;— J, )sina, cosa,, va ¢y, =0. (142)

1.2.1 Linear control

Linear system

— T 4
Inner loop L TRMS
controller

Figure 1.7: Linearization using the feedback controller
Assuming that the electromechanical model (1.40), or the TRMS
described by the math model (1.30), (1.42) satisfies:
- Absolutely accurate;
- Fully actuated;
- And without any uncertainty, i.e., n(t) = 0, then a controller
(inner loop) that makes the feedback system linear, this yields:

z=M(gv+C(g,9)q+9(9)- (1.43)
We can see, immediately that with the internal loop controller (1.43)

given above, the feedback system in Figure 1.7 will become linear
(2nd-degree integral and decoupling):

M(q)v=M(q)§ hay v=4, (1.44)
For ) (q)is the inverse matrix (positively determined). Moreover, we

also see that with the controller (1.43), the system (1.44) is not only
linear but also decoupling. With such an internal loop controller
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(1.43), the next control problem is only linear system control,
decoupling (1.44) by a linearizing controller (in the outer loop) so that
the whole closed-loop system obtain the desired tracking performance,

1.e., let its' output ¢ asymptotically to the reference vector 1 .

1.2.1.1 PID control

1.2.1.2 Optimal control of LOR and LOG

1.2.2 Nonlinear control

1.2.2.1 Sliding control

1.2.2.2 Adaptive control

1.2.2.3 Fuzzy control

1.2.2.4 Neural network control

1.2.2.6 Predictive control and receding horizon control

1.3 Conclusions

In chapter 1, the dissertation presented an overview of the Twin
Rotor MIMO system, analyzing the mathematical model based on
Euler-Lagrange, referring to the nonlinear problems of the object
researching as TRMS. Hence, it can see that TRMS is a nonlinear
MIMO system with two inputs / two outputs, significant coupling,
uncertainty parameters, and disturbance effects. Through overall
analysis and evaluation of the research of domestic and foreign
authors with research directions on controlling motion trajectory of
TRMS thereby clarifying the urgency of the dissertation, proposed
establishing the trajectory tracking adaptive controller for the
uncertainty bilinear electromechanical system based on the linearized
controller, and the uncertainty identifier based on time receding
optimization of the model deviation applies to TRMS. This controller
takes advantage of the existing controllers and avoids their
disadvantages. Therefore, the dissertation has set out the
requirements:

- Still using the reliable advantage of the continuous linear control
methods (don't need to discrete the model for controller design);

- Add on linear control methods in the continuous time-domain, or at
least those linearized methods, adaptability, and robustness to
nonlinear uncertainties.
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CHAPTER 2
EXACT LINEARIZED CONTROL FOR THE TRMS WITH
EXACT MODEL

In this chapter, the dissertation will seek to establish the trajectory
tracking controller for the electromechanical system with the bilinear

Euler-Lagrange model: M(q)j +C(q,q)=F [g + c_l(c_j,t):l (2.1

instead of the original structure (1.40)
It could realize that if compared with (1.40) this model (2.1) is

equivalent if the unknown functions 7(%), as well as the friction
force vector and the gravitational acceleration g(g) of (1.40) are

assumed to belong to the image space of F':

n(t) = Fu(t) and g(q)= Fy(g) 22)
Then there is the relationship between n(t),g(g) of (1.40) and
disturbance d(g,t)of (2.1): d(q,t) = n(t) — g(q_[)/ (2.3)

2.1 Original method: Gravity compensation control
The gravitational compensation control method is a design

method for the reference trajectory tracking controller, denoted 7,

for the joint variable ¢ for electromechanical system class (1.40) full

actuator without any Jncertainties (called an exact model system):
M(@Qg+C(g,9)q+9(q)=u 2.4)

In which, & = 7, means that the actuator is assumed to be an ideal

transformation of physical values.

r e Mechatronic

— — Tr:ar_t:::e::rr;ce v Exact U | system (with
- oot —>| linearized —> Euler- -
tracking
controller Lagrange
controller
model)

Figure 2.1: The cascade structure of the gravity compensation controller [4]
2.1.1 Exact linearization using feedback signals

Feedback linearization controller (inner loop control) for mechatronic
systems (2.4) the same controller was known before (1.43):

u=M(q)v+C(q,9)q+9(q) (2.5)

£S5}
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and with it the closed system in the inner loop, becomes linear: g =v (26)

Moreover, the above linear system (2.6) is also coupling,
including 1 the SISO subsystem (single input single output) of the
2nd degree integral form:

gz :/UZ’ 7::1,2, cee s
, where 7 is the number of variables (also the number of input signals).

2.1.2. Tracking trajectory using outer loop control
The outer loop controller is defined as [4]:

0= F s Kie Ky % i e =1-g @7

, where r[rad], e [rad], K, [rad/s*], K,[rad/s]

Two matrices K, K, are chosen such that: ¢ :{ 0 0 } (2.8)
-Kl 2

, 1s the Hurwitz matrix. With the above outer loop controller, the
exact linearized system (2.6) will become:

. d’r de d’e de
=v=—F+Ke+K,—or0=—+Ke+K,—,
dm8mg T ey MR T p e ey
It will become [ej _ (D(?j =S (ej _ exp(d)t)(e.(o)] (2.9)
€ é é €(0)

Thus, e = 0 and € — 0, because the @ is the Hurwitz matrix.
2.1.3 Combination controller

Putting the two controllers (2.5) and (2.7) together is obtained:
u=M(q)[i+K e+ K,e]+C(q,4)i+g(q) (2.10)
with e =r-¢q

2.2 The proposed method for the bilinear Euler-Lagrange
system with the exact model

M(p)j+C(g,9)g=u (2.11)
2.2.1 Controller for reference trajectory tracking

Modify the combination controller (2.10) so that it matches the
bilinear Euler-Lagrange form so that in equation (2.11), this yields:

u=M(Q[i+Ke+K,é|+C(q.4)§ voie=r—q (2.12)
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The trajectory
tracking controller
gave in formula
2.12

S}

Figure 2.2: Reference trajectory tracking control for the bilinear system
according to joint variable

Theorem 1: For matrices K, K,: K| =diag(ky;), K, =diag(k,,)
with kzzz' >k, >0 (2.16) then the controller will make the output of
the bilinear system according to the joint variable, described by the
exact model (2.11), asymptotic to the reference signal 1 :
Proof:

Sign of two matrices:

2

0= 2K 0 cmdP:(zKle KIJ 2.17)
0 2Kj;-K)

With the conditions in (2.16), the P and the Q are the definite positive

symmetrical matrices. Next, the @ is given by (2.8), we have:

TP+ PO = 0 -K\(2K\K, K, N 2K\K, K, 0 I (218)
I -K, K, K, K, K,\-K, -K,

2K} 0
(a2
0 2(K;-K)

Finally, since (2.18) is the Lyapunov equation with () is the

definite positive matrix, and the result P is the definite positive
symmetric matrix (even unique); therefore, the @ must be the
Hurwitz matrix. Hence, according to section 2.1.2, the equation (2.9)

with the € =7-¢ must have the € —> 0, and the ¢ > 0 at the

same time (which needs to prove).
2.2.2 Evaluating the proposed controller robust performance for
the uncertain bilinear Euler-Lagrange system

Documents [1] and [4] have presented an ISS robust control
method for a general uncertain system (1.40), fully actuated, i.e., the
system has the model:

M(9)j +C(g,9)g+g(q) =u+n(t), ge R" (2.19)
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Based on the above results of [1], [4] on ISS stability, the
dissertation comes up with a statement similar to the following, but
now for the bilinear FEuler-Lagrange class (2.11) has added
uncertainty, is described:

M(q)g+C(g,9)g=u+n(t) (222)
Theorem 2: With two matrices K|, K, :
K, =diag(ky;), K, =diag(k,;)

(2.23)
k= .. =k, =a, ky= ... =k, =+Jab
have b-1>a >0 is optional, then the controller is:
u=M(q)|#-d()+ Kie+ Kyé |+ C(0.0)d (2.24)
where d(t)is the selected function, is satisfied:

d(®)-M(g)"n(t)| < p Vtg (2.25)

will bring the tracking error e =r - q of the bilinear Euler-Lagrange

system containing the uncertainty (2.22), with its derivative €,
towards the small around of the origin:

0= {P = col(e.¢) e R™| |p| < 5} (2.26)
. - a

Proof:
With two matrices K, and K, given in (2.23), the two matrices

P and () determined by formula (2.17), as the proof of theorem 1,
are two positively defined symmetric matrices. Moreover, they also
satisfy the Lyapunov equation (2.18) with the matrix @ given in
(2.8). In addition, the closed system, consisting of a bilinear Euler-
Lagrange object (2.22) and the controller (2.24), is described:

d’e

d . _
i =—KIQ—K2§+CLG)—M(Q) "n(t)

or

—== p+|  |lv=Ddp+ By
dt _Kl _KZ - I - (2.27)

where:

(iosrsomss<)
P, , u(t)=d(t)-M(q) " n(t) and B = !
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Use a positive determination function:
1 . .
V(p) :EQTPB with p = col(g,g) = (pl,pz, N )T
together with (2.27), we have:
av 1

== 5[(q>g+ By)TPQ+£TP((DQ+By)]

- %[BT«I)TP + PO+ " (BTP+ BT PT )g]

= 7(— TQQ+ ZQTBTPB)

P
K? 0 2K K, K
:_pT 1 X p+yT(0,])( 132 ljp
“lo (K3-K)) K, K, )~

K? 0
="t el (KL Ky)p
0 (K;-K))

5 n
=—q lel —(ub—a)len+7 +(ap1, ..,ap,,(ab=a)p, ., - ,(ab—a)pzn)y
i= i=

<-a? B‘Z +(L‘QHE‘ < a(ﬂ—a‘gmg‘

Thus, when the tracking error p is far from the origin, it means

p e O, then there is V <0, and so, p decreases or the tracking error

is going to the origin, and that is the proof.

Finally, from theorem 2 we can see that when directly applying
the ISS stable controller (2.24) to the uncertain Euler-Lagrange
system (2.22), the bigger the chosen constant @, the gravitational
domain O will be smaller. In practice, we can not choose @ = so
that the ISS stable tracking becomes asymptomatic stable tracking.
Therefore, in order to control the asymptotic stable tracking, the

remaining problem is how to choose the function vector d(t)
satisfying the requested condition (2.25) corresponding tou=0.

Dissertation will solve this problem in chapter 3.

2.2.3 Applying to TRMS and verifying controller performance by
simulation on MatLab

The reference signals are the step and the sine wave:

7= (o a) =(05,03) [rad]
r=(tp @) =(025in(0.1256t), -0.2sin(0.1256t))" [rad]

. . 40 0 30 0
Two matrices K, K, , are chosen: K, :( ) 40) and K, :[ ; 30]
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Figure 2.3: Step response of the yaw Figure 2.4: Step response of the pitch
angle in the case of model without g(q)  angle in the case of model without g(q)
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Figure 2.5: Sine wave response of the Figure 2.4: Sine wave response of the

yaw angle in the case of model without g(q)  pitch angle in the case of model without q(q)

2.3 Conclusions

The research results of the dissertation in this chapter include:

- Has briefly presented a traditional control method, which is the gravity
compensation control method, as a basis for proposing the construction of an
exact linearized controller of the dissertation, applied for the bilinear Euler-
Lagrange system class, has fully actuated and does not contain uncertainty
(called a system with exact model).

- Has been accurately demonstrated by theory (in Theorem 1) about the
stable asymptotic tracking performance on the reference trajectories that this
proposed controller gives the bilinear Euler-Lagrange system.

- In the case of the inexact bilinear Euler-Lagrange system, that is, itself
exists disturbance, in this chapter, the dissertation has also discussed a
proposed possibility to improve the controller to remain can achieve at least a
stable ISS tracking performance (instead of asymptotic stabilization).

Although this additional result will not use to continue in the dissertation,
it can be seen as a confirmation of the proposed controller's applicability for a
wide class of the Euler-Lagrange systems when the model is inexact (with
model deviations).

- In addition to the theoretical proof, the proposed controller's asymptotic
tracking performance has also been demonstrated by the dissertation by
simulation with a bilinear Euler-Lagrange TRMS, and without disturbance.
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CHAPTER 3
UNCERTAINTY COMPENSATION CONTROL BASED
ON TIME RECEDING OPTIMIZATION OF THE
MODEL ERRORS

Nowadays, there are many methods to identify the general
uncertainty nonlinear system, and therefore, they are also applicable
to the bilinear system:

&= A(z)z+B(z)[u+d(z.t)] 3.1)
Where, d(z,t) isa functional uncertainty, state dependent and

having the same number of dimensions as the control signal, that is,
the functional uncertainty component belongs to the image

space B(z).
d Disturbance
u Control L SysLem
— Actuator Object >
d
Disturbance -t

estimator <—|

Hinh 3.1: Structure of the compensation control system for input
disturbance
It can be seen that after the uncertainties were identified and
compensated as the described of Figure 3.1, the controller design
(outer loop) will become simpler with only the control for the
predetermined system described by bilinear model:

T =A(z)z + B(z)u (3.2)

R

so that its output ¢ = g(x) is asymptotically tracking with the preset

reference trajectory 7(f). That is also the work solved by the

dissertation in chapter 2 for TRMS together TRMS control program

3.1 Disturbance identification algorithm

3.1.1 The disturbance system class having a bilinear state model
The dissertation limits the scope of the study for the class of

nonlinear control objects, described by the bilinear model (including

TRMS). When the actuator is assumed to be ideal, with having
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u =717 (purely in terms of values), with no error (d =0) and no

impact disturbance, the bilinear system in Figure 3.1 will have an
ideal model is given in equation (3.2), where:
- A(z), B(z) are two state dependent matrices,

- U, & are the vectors of control signals and the system state, respectively.

Thus, if we now consider the effect of input disturbance as well
as actuator error, even when there is a model deviation with the
assumption that the deviation belongs to the image space of
the B(z), the above idea model will become a functional uncertainty

model of the general form:
i = A(z)z+ B(z)[u+d] 3.3)

It can be seen that the uncertain bilinear model (3.3) is enough to
cover a wide class of actual nonlinear systems, including uncertain
Euler-Lagrange systems (2.1), fully actuated or underactuated [6],
including TRMS, is the object chosen by the dissertation to simulate
and evaluate the uncertain identification performance. Indeed, if we use the sign:

&

z= =\

Z q

then (2.1) becomes (3.3) with:
0

I 0
A(””):[O -M(q)"om,q')J i B(“:[MWFJ

3.1.2. Disturbance identification based on time receding
minimization by model squared error
Figure 3.2 describes identifying the disturbance d(t) based on

3.4

time receding minimization of the identification errors [69]:
(lkfl Lil.-

K P Voo

T T
tk—l tk tk+l tk-+2
Measure T, = i(f,‘)
Calculate 2z *

Determine dl.' dz

Figure 3.2: Principle of the disturbance identification based on time
receding minimization
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Disturbance identification algorithm (AD algorithm)

1. Choose an appropriate time receding horizon Ts at the time
instant ¢, =k7., k=0,1, ...evenly spaced. These are the times at
which d(t) will be approximately estimated as a series of
d, ~d(t,) values.

Here we need to assume that the matrix B(z) of the bilinear
system (3.3) is full rank at all points of state x;, = (%), that is,
there is rankB(z;) =n, Vz, .

Assign arbitrarily z_; and d—l Setz_; =0, k=0

2. Measure z;, = z(%;.) from the controlled system and calculate:

A]: =I+ TsA(gk—l)’

A =1+ T Az, ), (3.15)
B, =T,B(z; ),

_ z
2y =4z + By,

_dk = [BkTBk]il Bl (Ek — et Az - A ik—l)
set k:=k+1 and turn back to step 2.

Regarding the performance of the disturbance identification,
disturbance d(%) in the disturbance bilinear system (3.3) of the above
identification algorithm, in [69] has confirmed and proved: “If state
x;, = x(l, ) measured from the at time ), accurately represented by
the discontinuous model:

T, = Az, + By [E + d(tk)] where

A =I1+TA(z;,) and B, =T, B(z;,)
then, the estimated result obtained by AD algorithm will be accurate,
this yield: d, =d(t,)”

To speed up convergence for the above recognition algorithm, we
can assign the variable: 2, =)
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In such a case, the calculations (3.15) of the above given identity
algorithm will be replaced by:
AL =T+ T A ),
Ap =1+ T Az, ), (3.16)
By, =T, B(z}_),

_ Az
2 =A; 23 + Bru,

dy= [B/?Ble By (Ik —zp+ ALz~ Jf@c—l)

2 =Ty
3.2 Establishing a reference trajectory tracking adaptive
controller for the disturbance bilinear Euler-Lagrange system

In chapter 2, the dissertation presents the asymptotic tracking
control method for the bilinear Euler-Lagrange system with the exact
model (2.11). Next, we will add to it the ability to disturbance
identification and compensation control this  disturbance
identification, so that it is applicable to a class of the disturbance
Euler-Lagrange system (2.19).

First, we convert the disturbance Euler-Lagrange model (2.19) to
a bilinear disturbance FEuler-Lagrange form by placing a new
summarized system disturbance:

d(g,t)=n(t)-g(q) (3.18)

Then, the initial disturbance Euler-Lagrange model (2.19)

becomes: M(q)g +C(q,¢)q =u+d(q,t) (3.19)

Next, using the sign: . _ (QJ (3.20)
-4

then model (3.19) becomes the disturbance bilinear state model:

(0 i 0 o
2= _mrcw)t g 2 e

= A(z)z+ B(z)[u+d(z,1)] (321
as shown in (2.32) and (3.4), where:

s ugonn) ")
o v c@d) T M@

the model (3.3), suitable for the disturbance identification algorithm
presented in section 3.1.2

and d(z.) = d(g.1). as
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3.2.1 Combining controller by tracking control and disturbance
compensation
This combination control structure is shown in Figure 3.3 below:

Euler- z=col(q,q)
Lagrange
system

r
= Linearized u
controller

Disturbance [«

estimator <—|

Hinh 3.3: Exact linearized control combines
with disturbance compensation
3.2.2 Verifying performance control by simulation on MatLab
with TRMS
- Step reference signals: = (ahRs ap )T = ((),5, 0,3)T
- Sine wave reference signals:

r=(, @) =(0.25in(0.1256t), — 0.2sin(0.1256t))"
40 0 30 0
K, = s K, =
( 0 40) [ 0 30)
- Unknown function is assumed:

n(ty = [ 0-045in(0.31)+0.02¢05(0.011)
710,08 c0s(0.2t) +0.07sin(0.5¢)

, and then disturbance d(q,t) =n(t) —g(q)

0.5

= = =Disturbance 04 === Disturbance
0.4 = -Estimate = =Estimate
T F 02
Z 03 Z
é 0.2 E 0
2 g9 | - Y™ /\ a) r
E E02] \ AANSN AN
<y 2N "N v y
AV AW AWaANIaN A VAV ALY VAN
0.1 04
0 0 40 60 80 100 0 2 4 60 8 100
Time [s] Time [s]
Figure 3.5: The result of the Figure 3.6: The result of the
disturbance d, (t)in the horizontal disturbanc d,(t)ein the vertical

plane with the step reference signal — plane with the step reference signal
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Figure 3.9: Step response of
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Figure 3.11: The result of the
disturbance estimator [ih (t)in the

horizontal plane with the sine wave
reference signal
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Figure 3.12: The result of the
disturbance estimator élv(t) in the
horizontal plane with the sine wave
reference signal
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In chapter 3, the dissertation has achieved the following research

results:

- Establishing an algorithm to estimate the uncertainty of the
bilinear Euler-Lagrange model, serving for compensatory control.

- Combining the disturbance compensation controller with the
exact linearized controller in chapter 2 to get the reference signal
asymptotic tracking stable controller for bilinear Euler-Lagrange

systems.

- Evaluating the proposed controller performance by simulations

on MatLab for TRMS
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CHAPTER 4
IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Laboratory table description

This is the experimental table available at the Research development
Institute of Advanced Industrial Technology of Thai Nguyen
University of Technology.

4.1.1 The devices on the laboratory table

4.1.1.1 Computer

4.1.1.2 Card dSPACE DS 1103

4.1.1.3 TRMS physical system

4.1.1.4 External disturbance generation system

dSPACE 1103

Diéu khién e
Figure 4.1: Physical structure Figure 4.5: Model of TRMS
of TRMS experimental table experimental table
4.1.2 Overall structure of TRMS testing table of Thai Nguyen
University of Technology

Figure 4.5 is the Model of TRMS experimental table, and Figure 4.14
is structure of TRMS real system designed on Simulink.

S Wave
an_R
= = AR
Step_Ah R -

nnnnn

FID_Wv

Figure 4.14: Structure of TRMS real system designed on Simulink
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4.3 Experimental results and evaluation

4.3.1 Performing experiments

The reference signals are the step:
oy, > 1, =0.5[rad]and o, > 1, =0.3[rad]

The reference signals are the sine wave:

ay, =13 =0.25in(0.1256¢) [rad] s o, —> r, =-0.2sin(0.1256t) [rad]
Exact linearized controller, of which two matrices K, K, are still

selected respectively: - _(40 0
=
0 40

30 0
5 Kz =
0 30

- Speed and current controller parameters for the tail motor:

PID, :K,,, =0.00001, K,

= 0000005, K, =0.000035
PID, : K,, =025, K, =20, K,

=0.0028

- Speed and current controller parameters for the tail motor:
PID,,: K, =0.000004, K, , =0.00005, K, =0.000015

PID, :Kp, =00, K =80, K; =0.0005

4.3.2 Results and performance assessment

B Output
M. Error:

Yaw angle [rad]
o
N

o 10 20 30 40 S0 €0 7O 80 @0 100
Time [s]

Figure 4.25: Step response of yaw angle
and error under a noise of blow fan at
t=(50+100)s

M Estimated disturbance
0.005

0.000

Amplitude [Nm]

~0.005

~0.01

o 20 40 &0 20 100
Time [s]

Figure 4.27: The estimated disturbance
d, (t)on the horizontal plane corresponds
to the step reference under the noise of blow

Janat t =(50+100)s

G s B e B L B L e i

10 20 30 40 S0 &0 FO 80 90 100

e =]
Figure 4.25: Step response of yaw angle
and error under a noise of blow fan at

t= (50%100)5

M Estimated disturbance

o 10 20 30 40 S0 80 7O &0 GO0 100
Time (=]

Figure 4.28: The estimated disturbance
d,v (t) on the vertical plane corresponds to

 Amplitude [Nm]

the step reference under the noise of blow

Janat t =(50+100)s
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Figure 4.29: Sine wave response of ~ Figure 4.30: Sine wave response of
yaw angle and error under a noise  pitch angle and error under a noise

of blow fan at t = (50+100)s of blow fan at ¢ = (50+1()())5
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Figure 4.34: The estimated disturbance
d,(tyon the horizontal plane corresponds

Amplitude [Nm]
Ampglitude [Nm]
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Figure 4.33: The estimated disturbance

dh (t)on the horizontal plane corresponds
) to the sine wave reference under the noise

to the sine wave reference under the noise
. of blow fan noise at ¢ :(50+100)s

of blow fan noise at ¢ = (50+100)s

4.4 Conclusions

In chapter 4, the following tasks are solved:

- The designed, installed, set up, and tested with the TRMS in the
laboratory with an exact linearized controller combined with the
disturbance estimator to control disturbance compensation. This
exact linearized controller is torque controller so to test the system
needs two additional control loop: the speed and the current control
loops.

- The test results on the TRMS experimental table are matched with the
theory of control performance confirmed in chapters 2 and 3. These results
have also demonstrated the correctness of the disturbance estimation and
disturbance compensation algorithm when the object model is uncertain and
affected by disturbance, and has enhanced disturbance resistance to improve
the adaptive control performance of the system.
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CONCLUSIONS AND RECOMMENDATIONS

I. CONCLUSIONS

The results of the dissertation research have made some new
contributions as follows:

- Establishing the trajectory tracking controller for the bilinear
electromechanical system, proving the stability and asymptotic
stability of the tracking system in the absent disturbance and
disturbance. Based on the traditional control method, which is the
gravitational compensation control, as the basis for proposing the
establishment of an exact linearized controller of the dissertation,
applying for the bilinear Euler-Lagrange system class, have fully
actuators, and no disturbance (called an exact modeling system).
Strictly demonstrated by theory (in the theorem 1 and 2) about the
stable tracking performance according to the reference trajectory that
this proposed controller gives the bilinear Euler-Lagrange system;

- Establishing the trajectory tracking adaptive controller for the
mechatronic bilinear system on the basis of the linearized controller
and the disturbance identifier based on time receding minimization
by model squared error. Based on established the disturbance
estimator algorithm in the bilinear Euler-Lagrange model for doing
compensatory control. Combine with the disturbance controller with
the exact linearized controller in Chapter 2 to obtain a reference
signal asymptotic stable tracking controller b for bilinear Euler-
Lagrange systems.

1I. RECOMMENDATIONS

- Studying the TRMS model, which can apply to different
controllers, in training at graduate and post-graduate level of the
university;

- With results of this study can provide to fly elements with
complex aerodynamic forms such as UAVs and other nonlinear
control methods applied to TRMS.



